Homogenized Balance Equations for Nonlinear Poroelastic Composites
نویسندگان
چکیده
Within this work, we upscale the equations that describe pore-scale behaviour of nonlinear porous elastic composites, using asymptotic homogenization technique in order to derive macroscale effective governing equations. A hyperelastic composite can be thought as being comprised a matrix interacting with number subphases and percolated by fluid flowing pores (which is chosen Newtonian incompressible here). general model derived then specified for particular choice strain energy function, namely de Saint-Venant function. This leads system PDEs, which poroelastic type additional terms transformations account material. Our new porohyperelastic-type describes composites prescribing stress balance equations, conservation mass Darcy’s law. The coefficients these encode detailed microstructure material are found solving differential problems. reduces following limit cases (a) linear when deformation gradient approaches identity, (b) there no (c) poroelasticity only matrix–fluid interaction considered. applicable interactions between various solid phases occur at pore-scale, biological tissues such artery walls, myocardium, lungs liver.
منابع مشابه
On Finite Closures of Homogenized Solutions of Nonlinear Hyperbolic Equations
We study nonlinear equations subject to oscillatory initial data. The oscillatory solution of such problems tends to a homogenized weak limit that is characterized by the corresponding homogenized equations. Those equations usually involve an additional independent variable, so that the weak limit is an average of infinitely many functions. In certain cases, however, there is an alternative des...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Local and Homogenized Equations
Homogenization theory is concerned with finding the appropriate homogenized (or averaged, or macroscopic) governing partial differential equations describing physical processes occurring in heterogeneous materials when the length scale of the heterogeneities tends to zero. In such instances it is desired that the effects of the microstructure reside wholly in the macroscopic or effective proper...
متن کاملEffective Governing Equations for Poroelastic Growing Media
A new mathematical model is developed for the macroscopic behaviour of a porous, linear elastic solid, saturated with a slowly flowing incompressible, viscous fluid, with surface accretion of the solid phase. The derivation uses a formal two-scale asymptotic expansion to exploit the wellseparated length scales of the material: the pores are small compared to the macroscale, with a spatially per...
متن کاملSPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2021
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app11146611